Main Article Content



The magnetohydordynamic flow and heat transfer of two viscous incompressible fluids through porous medium has been investigated in the paper. Fluids flow through porous medium between two parallel fixed isothermal plates in the presence of an inclined magnetic and perpendicular electric field. Fluids are electrically conducting, while the channel plates are insulated. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and closed-form solutions are obtained. Solutions with appropriate boundary conditions for velocity and temperature fields have been obtained. The analytical results for various values of the Hartmann number, load factor, viscosity and porosity parameter have been presented graphically to show their effect on the flow and heat transfer characteristics.

Article Details

How to Cite
PETROVIĆ, Jelena D. et al. POROUS MEDIUM MAGNETOHYDRODYNAMIC FLOW AND HEAT TRANSFER OF TWO IMMISCIBLE FLUIDS. Thermal Science, [S.l.], v. 20, p. S1405-S1417, feb. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/1659>. Date accessed: 27 june 2017. doi: https://doi.org/10.2298/TSCI16S5405P.
Received 2017-02-07
Accepted 2017-02-07
Published 2017-02-07


[1] Blum, E . Ya., Heat and Mass Transfer in MHD Flow Past Bodies, Magnetohydrodynamics, 6 (1970), 2, pp. 212-218
[2] Darcy, H., The Flow of Fluids through Porous Media, McGraw-Hill, New York, USA, 1937
[3] Cunningham, R. E., Williams, R. J., Diffusion in Gases and Porous Media, Plenum Press, New York, USA, 1980
[4] McWhirter, J., et al., Magnetohydrodynamic Flows in Porous Media II: Experimental results, Fusion Technology, 34 (1998), 3, pp. 187-197
[5] Prescott, P. J., Incropera, F. P., Magnetically Damped Convection During Solidification of a Binary Metal Alloy, Journal of Heat Transfer, 115 (1993), 2, pp. 302-310
[6] Lehmann, P., et al., Modification of Inter-Dendritic Convection in Directional Solidification by a Uniform Magnetic Field, Acta Materialia, 46 (1998), 11, pp. 1067-4079
[7] Bodosa, G., Borkakati, A. K., MHD Couette Flow with heat Transfer between Two Horizontal Plates in the Presence of a Uniform Transverse Magnetic Field, Journal of Theoretical and Applied Mechanics, 30 (2003), 1, pp. 1-9
[8] Attia, H. A., On the Effectiveness of Variation in the Physical Variables on the MHD Steady Flow between Parallel Plates with Heat Transfer, International Journal for Numerical Methods in Engineering, 65 (2006), 2, pp. 224-235
[9] Singha, K. G., Analytical Solution to the Problem of MHD Free Convective Flow of an Electrically Conducting Fluid between Two Heated Parallel Plates in the Presence of an Induced Magnetic Field, International Journal of Applied Mathematics and Computation, 1 (2009), 4, pp. 183-193
[10] Nikodijević, D., et al., Flow and Heat Transfer of Two Immiscible Fluids in the Presence of Uniform Inclined Magnetic Field, Mathematical Problems in Engineering, 2011 (2011), ID 132302
[11] Alpher, R. A,. Heat Transfer in Magnetohydrodynamic Flow between Parallel Plates, International Journal of Heat & Mass transfer, 3 (1961), 2, pp. 108-112
[12] Cox, S. M., Two Dimensional Flow of a Viscous Fluid in a Channel with Porous Wall, Journal of Fluid Mechanics, 227 (1991), June, pp. 1-33
[13] Tawil, M. A. E., Kamel, M. H., MHD Flow under Stochastic Porous Media, Energy Conservation Management, 35 (1994), 11, pp. 991-997
[14] Yih, K. A., Radiation Effect on Natural Convection over a Vertical Cylinder Embedded in Porous Media, International Communications in Heat and Mass Transfer, 26 (1999), 2, pp. 259-267
[15] Vidhya, M., Sundarammal, K., Laminar Convection through Porous Medium between Two Vertical Parallel Plates with Heat Source, Frontiers in Automobile and Mechanical Engineering (FAME), (2010), pp. 197-200, doi: 10.1109/FAME.2010.5714846
[16] Geindreau, C., Auriault, J., Magnetohydrodynamic Flows in Porous Media, Journal of Fluid Mechanics, 466 (2002), Sept., pp. 343-363
[17] Singh, R. D., Rakesh, K., Heat and Mass Transfer in MHD Flow of a Viscous Fluid through Porous Medium with Variable Suction and Heat Source, Proceedings of Indian National Science Academy, 75 (2002), 1, pp. 7-13
[18] Tzirtzilakis, E. E., A Mathematical Model for Blood Flow in Magnetic Field, Physics of Fluids, 17 (2005), 7, pp. 077103/1-077103/15
[19] Bird, R.B., et al., Transport Phenomena, John Wiley and Sons, New York, USA, 1960
[20] Bhattacharya, R. N., The Flow of Immiscible Fluids between Rigid Plates with a Time Dependent Pressure Gradient, Bulletin of the Calcutta Mathematical Society, 60 (1968), 3, pp. 129-136
[21] Mitra, P., Unsteady Flow of Two Electrically Conducting Fluids between Two Rigid Parallel Plates, Bulletin of the Calcutta Mathematical Society, 74 (1982), pp. 87-95
[22] Chamkha, A. J., Flow of Two-Immiscible Fluids in Porous and Non-Porous Channels, ASME Journal of Fluids Engineering, 122 (2000), 1, pp. 117-124
[23] Lohrasbi, J., Sahai, V., Magnetohydrodynamic Heat Transfer in Two Phase Flow between Parallel Plates, Applied Scientific Research, 45 (1988), 1, pp. 53-66
[24] Alireza, S., Sahai, V., Heat Transfer in Developing Magnetohydrodynamic Poiseuille Flow and Variable Transport Properties, International Journal of Heat and Mass Transfer, 33 (1990), 8, pp.1711-1720
[25] Malashetty, M. S. et al., Convective MHD Two Fluid Flow and Heat Transfer in an Inclined Channel, Heat and Mass Transfer, 37 (2001), 2-3, pp. 259-264
[26] Malashetty, M. S., et al., Two Fluid Flow and Heat Transfer in an Inclined Channel Containing Porous and Fluid Layer, Heat and Mass Transfer, 40 (2001), 11, pp. 871-876

Most read articles by the same author(s)