NUMERICAL ANALYSIS OF SAKIADIS FLOW PROBLEM CONSIDERING MAXWELL NANOFLUID

Main Article Content

Meraj MUSTAFA Junaid Ahmad KHAN

Abstract

This article investigates the flow of Maxwell nanofluid over a moving plate in a calm fluid. Novel aspects of Brownian motion and thermophoresis are taken into consideration. Revised model for passive control of nanoparticle volume fraction at the plate is used in this study. The formulated differential system is solved numerically by employing shooting approach together with fourth-fifth-order-Runge-Kutta integration procedure and Newton’s method. The solutions are greatly influenced with the variation of embedded parameters which include the local Deborah number De , the Brownian motion parameter Nb , the thermophoresis parameter Nt , the Prandtl number Pr and the Schmidt number Sc . We found that the variation in velocity distribution with an increase in local Deborah number De is non-monotonic. Moreover, the reduced Nusselt number has a linear and direct relationship with the local Deborah number  De .

Article Details

How to Cite
MUSTAFA, Meraj; KHAN, Junaid Ahmad. NUMERICAL ANALYSIS OF SAKIADIS FLOW PROBLEM CONSIDERING MAXWELL NANOFLUID. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2168>. Date accessed: 28 july 2017. doi: https://doi.org/10.2298/TSCI150306001M.
Section
Articles
Received 2017-03-03
Accepted 2017-03-13
Published 2017-03-13

References

[1] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD, 66 (1995) 99–105.
[2] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop and S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf. 57 (2013) 582-594.
[3] J. Buongiorno and L. W. Hu, Nanofluid heat transfer enhancement for nuclear reactor applications, ASME (Second International Conference on Micro/Nanoscale Heat and Mass Transfer) 3 (2009) 517-522 doi:10.1115/MNHMT2009-18062.
[4] K. V. Wong and O. D. Leon, Applications of Nanofluids: Current and Future, Advan. Mech. Engg. 2010 Article ID 519659.
[5] R. K. Tiwari and M. K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat & Mass Transf. 50 (2007) 2002-2018.
[6] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf. 128 (2006) 240– 250.
[7] A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49 (2010) 243-247.
[8] D. A. Nield and A. V. Kuznetsov, The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf. 52 (2009) 5792-5795.
[9] N. Bachok, A. Ishak and I. Pop, Boundary-layer flow of nanofluids over a moving surface in a flowing fluid, Int. J. Thermal Sci. 49 (2010) 1663-1668.
[10] W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf. 53 (2010) 2477-2483.
[11] M. Mustafa, T. Hayat, I. Pop, S. Asghar and S. Obaidat, Stagnation-point flow of a nanofluid towards a stretching sheet, Int. J. Heat Mass Transf. 54 (2011) 5588-5594.
[12] A. Aziz and W. A. Khan, Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate, Int. J. Therm. Sci. 52 (2012) 83-90.
[13] M. Mustafa, M. A. Farooq, T. Hayat and A. Alsaedi, Numerical and series solutions for stagnation-point flow of nanofluid over an exponentially stretching sheet, PLoS ONE 8 (2013) doi:10.1371/journal.pone.0061859.
[14] M. Mustafa, T. Hayat and A. Alsaedi, Unsteady boundary layer flow of nanofluid past an impulsively stretching sheet, J. Mech. 29 (2013) 423-432.
[15] O. D. Makinde, W. A. Khan and Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Transf. 62 (2013) 526-533.
[16] M. M. Rashidi, S. Abelman and N. Freidoonimehr, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf. 62 (2013) 515- 525.
[17] M. Turkyilmazoglu, Unsteady convection flow of some nanofluids past a moving vertical plate with heat transfer, ASME J. Heat Transf. 136 (2013) 031704 doi: 10.1115/1.4025730.
[18] M. Turkyilmazoglu and I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transf. 59 (2013) 167-171.
[19] A. V. Kuznetsov and D. A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate: A revised model, Int. J. Therm. Sci. 77 (2014) 126-129.
[20] M. Sheikholeslami, M. G. Bandpy, R. Ellahi, M. Hassan, S. Soleimani, Effects of MHD on Cu-water nanofluid flow and heat transfer by means of CVFEM, J. Magn. Magn. Mater. 349 (2014) 188-200.
[21] M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji and S. Soleimani, Thermal management for free convection of nanofluid using two phase model, J. Mol. Liq. 194 (2014) 179-187.
[22] M. M. Rashidi, N. Freidoonimehr, A. Hosseini, O. A. Bég and T. K. Hung, Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration, Meccan. 49 (2014) 469-482.
[23] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Boundary layer flow of nanofluid over a non-linearly stretching sheet with convective boundary condition, IEEE-Trans. Nanotech. 14 (2015) 159-168.
[24] A. Mushtaq, M. Mustafa, T. Hayat and A. Alsaedi, Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: A numerical study, J. Taiwan Inst. Chem. Eng. 45 (2014) 1176-1183.
[25] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy, Int. J. Heat Mass Transf. In Press (2015).
[26] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet, Int. J. Non-Linear Mech. 71 (2015) 22-29.
[27] M. Mustafa, A. Mushtaq, T. Hayat and B. Ahmad, Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: A numerical study, PLoS ONE 9 (2014) doi: 10.1371/journal.pone.0103946.
[28] J. Harris, Rheology and Non-Newtonian Flow, Longman, London, 1977.
[29] K. Sadeghy, A. H. Najafi and M. Saffaripour, Sakiadis flow of an upper-convected Maxwell fluid, Int. J. Nonlinear Mech. 40 (2005) 1220-1228.
[30] K. Sadeghy, H. Hajibeygi, S. M. Taghavi, Stagnation point flow of upper-convected Maxwell fluids, Int. J. Non-Linear Mech. 41 (2006) 1242–1247.
[31] M. Kumari and G. Nath, Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field, Int. J. Nonlinear Mech. 44 (2009) 1048- 1055.
[32] T. Hayat, Z. Abbas and M. Sajid, MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface, Chaos Solitons and Fractals 39 (2009) 840-848.
[33] B. Raftari and A. Yildirim, The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets, Comp. Math. Appl. 59 (2010) 3328- 3337.
[34] S. Mukhopadhyay, Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink, Chin. Phys. Let. 29 (2011) DOI: 10.1088/0256-307X/29/5/054703.
[35] T. Hayat, Z. Iqbal, M. Mustafa and A. Alsaedi, Momentum and heat transfer of an upper- convected Maxwell fluid over a moving surface with convective boundary conditions, Nucl. Eng. Des. 252 (2012) 242-247.
[36] M. S. Abel, J. V. Tawade and M. M. Nandeppanavar, MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet, Meccanica 47(2012) 385-393.
[37] T. Hayat, M. Mustafa, S. A. Shehzad and S. Obaidat, Melting heat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet, Int. J. Numer. Meth. Fluids 68 (2012) 233-243.
[38] S. Shateyi, A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction, Bound. Val. Prob. 196 (2013) DOI: 10.1186/1687-2770-2013-196.
[39] A. Mushtaq, M. Mustafa, T. Hayat and A. Alsaedi, Effect of thermal radiation on the stagnation-point flow of upper-convected Maxwell fluid over a stretching sheet, J. Aerosp. Engg. 27 (2014) 04014015.
[40] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions, AIP Advances 5 (2014) doi: 10.1063/1.4907927.
[41] R. Cortell, A numerical tackling on Sakiadis flow with thermal radiation, Chin. Phys. Let. 25 (2008) doi:10.1088/0256-307X/25/4/048.
[42] J. Harris, Rheology and Non-Newtonian Flow, Longman, London, (1977) p. 28.
[43] B. A. Bhanvase, M. R. Sarode, L. A. Putterwar, K. A. Abdullah, M. P. Deosarkar and S. H. Sonawane, Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO 2 nanoparticles, Chemical Engineering and Processing: Process Intensification 82 (2014) 123-131.

Most read articles by the same author(s)