AN APPROXIMATE ESTIMATION OF VELOCITY PROFILES AND TURBULENCE FACTOR MODELS FOR AIR-FLOWS ALONG THE EXTERIOR OF TEFC INDUCTION MOTORS

Main Article Content

Dardan O. KLIMENTA Antti HANNUKAINEN

Abstract

Compared to a number of other existing correlations for heat transfer, the empirical correlations for forced convection from a short horizontal cylinder in axial air-flows usually do not involve the effects of changes in air-flow velocity and/or air-flow turbulence. Therefore, a common analysis of the heat transfer by using only one energy balance equation for entire outer surface of a solid is considered insufficient for induction motor applications because it fails to  include aforementioned effects. This paper presents a novel, empirically-based methodology to estimate approximately the values of air-flow velocities and turbulence factors, that is, velocity profiles and turbulence factor models for stationary horizontal cylinders with and without fins (frame and two end-shields) in axial air-flows. These velocity profiles and turbulence factor models can then be used in analytical modelling of steady-state heat transfer from the exterior of totally enclosed fan-cooled (TEFC) induction motors.

Article Details

How to Cite
KLIMENTA, Dardan O.; HANNUKAINEN, Antti. AN APPROXIMATE ESTIMATION OF VELOCITY PROFILES AND TURBULENCE FACTOR MODELS FOR AIR-FLOWS ALONG THE EXTERIOR OF TEFC INDUCTION MOTORS. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2178>. Date accessed: 19 aug. 2017. doi: https://doi.org/10.2298/TSCI150626090K.
Section
Articles
Received 2017-03-03
Accepted 2017-03-13
Published 2017-03-13

References

[1] Kovalev, E. B., Burkovskii, A. N., Tokarenko, A. T., Heat release in channels between frame-ribbing of enclosed asynchronous motors, Elektrotekhnika 36 (1965), 11, pp.27-29.
[2] Heiles, F., Über die zweckmäßige Gestaltung und Anordnung von Kühlrippen, Elektrotechnik und Maschinenbau 69 (1952), 14, pp.323–331.
[3] Chanson, H., Applied Hydrodynamics: An Introduction, CRC Press, Taylor & Francis Group, LLC, Leiden, Netherlands, 2014, pp.253-286.
[4] Di Gerlando, A., Vistoli, I., Improved thermal modelling of induction motors for design purposes, in: IET Sixth International Conference on Electrical Machines and Drives (Conf. Publ. No. 376), Oxford, GB, 1993, pp.381-386.
[5] Kylander, G., Thermal modelling of small cage induction motors, Ph.D. thesis, School of Electrical and Computer Engineering, Chalmers University of Technology, Göteborg, Sweden, 1995.
[6] Hewitt, G. F., Hall-Taylor, N. S., Annular Two-Phase Flow, Pergamon Press, Oxford, GB, 1970.
[7] Balachandran, P., Engineering Fluid Mechanics, PHI Learning Private Limited, New Delhi, India, 2011, pp.232-275.
[8] Webster, J. G., Eren, H., Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, second ed., CRC Press, Taylor & Francis Group, LLC, Boca Raton, USA, 2014, pp.57.6-57.8.
[9] Holland, F. A., Bragg, R., Fluid Flow for Chemical Engineers, second ed., Butterworth-Heinemann, Oxford, GB, 1995, pp.85-88.
[10] Staton, D. A., Cavagnino, A., Convection heat transfer and flow calculations suitable for electric machines thermal models, IEEE Transactions on Industrial Electronics 55 (2008), 10, pp.3509-3516.
[11] Romo, J. L., Adrián, M. B., Prediction of internal temperature in three-phase induction motors with electronic speed control, Electric Power Systems Research 45 (1998), 2, pp.91-99.
[12] Valenzuela, M. A., Tapia, J. A., Heat transfer and thermal design of finned frames for TEFC variable speed motors, in: IEEE Proceedings of 32nd Annual Conference on IEEE Industrial Electronics – IECON 2006, Paris, France, 2006, pp.4835-4840.
[13] Valenzuela, M. A., Tapia, J. A., Heat transfer and thermal design of finned frames for TEFC variable-speed motors, IEEE Transactions on Industrial Electronics 55 (2008), 10, pp.3500-3508.
[14] Valenzuela, M. A., Tapia, J. A., Rooks, J. A., Thermal evaluation of TEFC induction motors operating on frequency-controlled variable-speed drives, IEEE Transactions on Industry Applications 40 (2004), 2, pp.692-698.
[15] Huai, Y., Melnik, R. V. N., Thogersen, P. B., Computational analysis of temperature rise phenomena in electric induction motors, Applied Thermal Engineering 23 (2003), 7, pp.779-795.
[16] Boglietti, A., Cavagnino, A., Staton, D., Determination of critical parameters in electrical machine thermal models, IEEE Transactions on Industry Applications 44 (2008), 4, pp.1150-1159.
[17] Boglietti, A., Cavagnino, A., Staton, D. A., Thermal analysis of TEFC induction motors, in: IEEE Conference Record of the 2003 IEEE Industry Applications Conference – 38th IAS Annual Meeting, Salt Lake City, UT, USA, 2003, vol. 2, pp.849-856.
[18] Boglietti, A., Cavagnino, A., Staton, D. A., TEFC induction motors thermal models: A parameter sensitivity analysis, IEEE Transactions on Industry Applications 41 (2005), 3, pp.756-763.
[19] Fernández, X. M. L., Coimbra, A. P., Pinto, J. A. D., Antunes, C. L., Donsión, M. P., Thermal analysis of an induction motor fed by unbalanced power supply using a combined finite element – symmetrical components formulation, in: IEEE Proceedings of the 1998 International Conference on Power System Technology – POWERCON 98, Beijing, China, 1998, vol. 1, pp.620-624.
[20] Mendes, A. M. S., López-Fernández, X. M., Cardoso, A. J. M., Thermal evaluation of TEFC three- phase induction motors under different supply frequencies, in: IEEE Proceedings of the 18th International Conference on Electrical Machines – ICEM 2008, Vilamoura, Portugal, 2008, paper ID 1069, pp.1-6.
[21] Valenzuela, M. A., Tapia, J. A., Rooks, J. A., Effect of protective covers for TEFC induction motors covered by pulp, in: IEEE Conference Record of the 2006 Annual Pulp and Paper Industry Technical Conference, Appleton, WI, USA, 2006, pp.1-7.
[22] Valenzuela, M.A., Millar, M., Tapia, J. A., Rooks, J. A., Thermal derating of TEFC induction motors coated or partially flooded by spilled pulp, in: IEEE Conference Record of the 2004 Annual Pulp and Paper Industry Technical Conference, 2004, pp.8-14.
[23] Moon, S.-H., Yun, J.-H., Kim, W.-G., Kim, J.-P., Thermal-flow analysis and cooling performance enhancement of a totally enclosed fan-cooled motor, in: IEEE Proceedings of 2013 International Conference on Electrical Machines and Systems – ICEMS 2013, Busan, Korea, 2013, pp.2028-2030.
[24] KMMP, Electric Motors & Components, Kurt Maier Motor-Press GmbH, Kalefeld, Germany, 2014.
[25] Koyasu, E., Ito, T., New series standard induction motor with class E insulation, Fuji Electric Review 10 (1964), 4, pp.130-136.
[26] Wiberg, R., Lior, N., Heat transfer from a cylinder in axial turbulent flows, International Journal of Heat and Mass Transfer 48 (2005), 8, pp. 1505-1517.
[27] Kobus, C. J., Shumway, G., An experimental investigation into impinging forced convection heat transfer from stationary isothermal circular disks, International Journal of Heat and Mass Transfer 49 (2006), 1-2, pp. 411-414.
[28] Kobus, C. J., Wedekind, G. L., An experimental investigation into forced, natural and combined forced and natural convective heat transfer from stationary isothermal circular disks, International Journal of Heat and Mass Transfer 38 (1995), 18, pp. 3329-3339.
[29] ABB LV Motors, GB 02-2005, The Motor Guide – Basic Technical Information about Low Voltage Standard Motors, second ed., ABB, Finland, 2005, pp. 34-46.
[30] ABB Motors and Generators, 9AKK105285 EN 02-2014, The Motor Guide – Basic Technical Information about Low Voltage Standard Motors, third ed., ABB, 2014, pp. 24-39, 65.

Most read articles by the same author(s)