SENSITIVE ANALYSIS OF HARMONICS ON THE ASSESSMENT OF THERMAL DIFFUSIVITY OF BUILDING MATERIALS OF A PERIODIC STATE

Main Article Content

Geoffrey PROMIS Omar DOUZANE Haykel BEN HAMED Thierry LANGLET

Abstract

Thermal efficiency of buildings requires a perfect knowledge of the thermal properties of materials which compose building envelope. To this end, the use of reliable testing methods for thermal diffusivity measurements of buildings materi- als is fundamental. Currently, periodic methods are based on the exploitation of fundamental harmonic, resulting from Fourier series decomposition. The objective  of this paper is to demonstrate that fundamental is necessary and sufficient in or- der to characterize the thermal diffusivity. For those purposes, a sensitive analysis  of harmonic contributions from Fourier series is supported by a substantial ex- perimental campaign. Moreover, some dissymmetrical tests were carried out in  order to highlight the preponderant influence of fundamental, compared to other harmonics. The analysis of contributions of harmonics shows that the evolution of thermal diffusivity is very slightly dependent on the number of harmonics.  Then,   the exploitation of fundamental is necessary and sufficient, and the characteriza-  tion test protocol is validated by experimental results and by the comparison with commonly accepted values for these kinds of materials.

Article Details

How to Cite
PROMIS, Geoffrey et al. SENSITIVE ANALYSIS OF HARMONICS ON THE ASSESSMENT OF THERMAL DIFFUSIVITY OF BUILDING MATERIALS OF A PERIODIC STATE. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2182>. Date accessed: 28 july 2017. doi: https://doi.org/10.2298/TSCI150702144P.
Section
Articles
Received 2017-03-03
Accepted 2017-03-13
Published 2017-03-13

References

[1] A.B. Larbi. Statistical modelling of heat transfer for thermal bridges of buildings. Energy and Buildings, 37(9):945–951, 2005.
[2] X. Li, Z. Yu, B. Zhao, and Y. Li. Numerical analysis of outdoor thermal environment around buildings. Building and Environment, 40(6):853–866, 2005.
[3] A. Ahmad and L. Al-Hadhrami. Thermal performance and economic assessment of masonry bricks. hermal Science, 13(4):221–232, 2009.
[4] O. Douzane, J.M. Roucoult, and T. Langlet. Thermophysical property measurements of building materials in a periodic state. International Journal of Heat and Mass Transfer, 42:3943–3958, 1999.
[5] A. Boudenne, L. Ibos, E. Gehin, and Y. Candau. A simultaneous characterization of thermal conductivity and diffusivity of polymer materials by a periodic method. Journal of Physics D: Applied Physics, 37:132–139, 2004.
[6] G-W. Nam, C-W. Kong, Y-M. Yi, and A. Ohnishi. Thermal diffusivity measurement of BMS 10-102 thermal insulation material in a vacuum condition using a cyclic heating method. Thermochimica Acta, 494(1-2):123–128, 2009.
[7] L. Qu, L. Xing, Z-Y. Yu, F. Ling, and J-G. Xu. An approximate method for solving a melting problem with periodic boundary conditions. Thermal Science, 18(5):1679–1684, 2014.
[8] G. Rousset and F. Lepoutre. Mesures de diffusivités thermiques par la méthode photoacoustique et par l’effet mirage. Revue Physique Appliquée, 17:201–207, 1982.
[9] K. Jeyadheepan, P. Palanichamy, P. Kalyanasundaram, M. Jayaprakasam, C. Sanjeeviraja, and K. Ramachandran. Antomation of photoacoustic spectrometer using VEE pro software. Measurement, 43(10):1336–1344, 2010.
[10] G. Vera-Medina, E. Marin, A. calderon, J.A.I. Diaz Gongora, G. Pena-Rodriguez, and O. Delgado- Vasallo. A method for heat capacity measurement by photoacoustics. Measurement, 46(3):1208–1211, 2013.
[11] F. Cernuschi, P.G. Bison, A. Figari, S. Marinett, and E. Grinzato. Thermal diffusivity measurements by photothermal and thermographic techniques. International Journal of Thermophysics, 25(2):439–457, 2004.
[12] M. Rombouts, L. Froyen, A.V. Gusarov, E.H. Bentefour, and C. Glorieux. Photopyroelectric measurement of thermal conductivity of metallic powders. Journal of Applied physics, 97(2), 2005.
[13] D. Dadarlat and M.N. Pop. Self-consistent photopyroelectric calorimetry for liquids. International Journal of Thermal Sciences, 56:19–22, 2012.
[14] R. Ivanov, E.I. Martinez-Ordonez, E. Marin, C. Araujo, D. Alaniz, M.E. Araiza, J. Villa, and J.I. de la Rosa-Vargas. Absolute measurements of thermal effusivity using the electropyroelectric technique. Thermochimica Acta, 554:59–62, 2013.
[15] L. Vozar. Two data reduction methods for evaluation of thermal diffusivity from step-heating measurements. International Journal oh Heat and Mass Transfer, 40(7):1647–1655, 1997.
[16] S.E. Gustafsson. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments, 62(3):797–804, 1991.
[17] E. Solorzano, J.A. Reglero, M.A. Rodriguez-Perez, D. Lehmhus, M. Wichmann, and J.A. de Saja. An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. International Journal of Heat and Mass Transfer, 51(25-26):6259–6267, 2008.
[18] A. Benazzouk, O. Douzane, K. Mezreb, B. Laidoudi, and M. Queneudec. Thermal conductivity of cement composites containing rubber waste particules: Experimental study and modelling. Construction and Building Materials, 22(4):573–579, 2008.
[19] A. Tandiroglu. Temperature-dependent thermal conductivity of high strength lightweight raw perlite aggregate concrete. International Journal of Thermophysics, 31(6):1195–1211, 2010.
[20] X. Li, L.G. Tabil, I.N. Oguicha, and S. Panigrahi. Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-HDPE biocomposites at processing temperatures. Composites Science and Technology, 68:1753–1758, 2008.
[21] S. Kim, J. Seo, J. Cha, and S. Kim. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Construction and Building Materials, 40:501–505, 2013.
[22] W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity. Journal of Applied Physics, 32(9):11679–1684, 1961.
[23] W.N Dos Santos, P. Mummery, and A. Wallwork. Thermal diffusivity of polymers by the laser flash technique. Polymer Testing, 34(5):628–634, 2005.
[24] L.D. Tomic, D.B. Jovanovic, R.M. Karkalic, V.M. Damnjanovic, B.V. Kovacevic, D.D. Filipovic, and S.S. Radakovic. Application of pulsed flash thermography method for specific defect estimation in aluminum. Thermal Science, 19(5):1845–1854, 2015.
[25] H. Wu and J. Fan. Measurement of radiative thermal properties of thin polymer films by FTIR. Polymer Testing, 27:122–128, 2008.
[26] J.M. Laskar, S. Bagavathiappan, M. Sardar, T. Jayakumar, J. Philip, and B. Raj. Measurement of thermal diffusivity of solids using infrared thermography. Materials Letters, 62(17-18):2740–2742, 2008.
[27] C. Boue and S. Hole. Infrared thermography protocol for simple measurements of thermal diffusivity and conductivity. Infrared Physics and Technology, 55(4):376–379, 2012.
[28] N. Milosevic. Optimal parameterization in the measurements of the thermal diffusivity of thermal barrier coatings. Thermal Science, 11(1):137–156, 2007.
[29] D. Gultekin and J.C. Gore. Simultaneous measurements of thermal conductivity, thermal diffusivity and specific heat by nuclear magnetic resonance imaging. Thermochimica Acta, 519(1-2):96–102, 2011.
[30] V.C. Mariani, A.G.B. Lima, and L.S. Coelho. Apparent thermal diffusivity estimation of the banana during drying using inverse method. Journal of Food Engineering, 85(4):569–579, 2008.
[31] M. Monde, M. Kosaka, and Y. Mitsutake. Simple measurement of thermal diffusivity and thermal conductivity using inverse solution for one-dimensional heat conduction. International Journal of Heat and Mass transfer, 53(23-24):5343–5349, 2010.
[32] M.M. Terzic, N.D. Milosevic, N.M. Stepanic, and S.J. Petricevic. Development of a single- sided guarded hot plate apparatus for thermal conductivity measurements. Thermal Science, (10.2298/TSCI151009226T), 2016.
[33] K-H. Lim, S-K. Kim, and M-K. Chung. Improvement of the thermal diffusivity measurement of thin samples by the flash method. Thermochimica Acta, 494(1-2):71–79, 2009.
[34] R.J. Goldstein, W.E. Idele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, K. Ghosh, and R. Mittal. Heat transfer - a review of 2004 literature. International Journal of Heat and mass Transfer, 53(21-22):4343–4396, 2010.
[35] J.I. Frankel. Motivation for the development of new thermal rate sensors for material science applications. International Journal of Materials and Product Technology, 24(1-4):199–206, 2005.
[36] J.M. Roucoult, T. Langlet, and J.M. Devisme. Contribution of the periodic state to thermal measurements in buildings materials. High Temperatures - High pressures, 24:403–407, 1992.
[37] O. Douzane, T. Langlet, and J.M. Roucoult. Metrology of the thermophysical characteristics of building materials a new experimental device. High Temperatures - High pressures, 29:443–447, 1997.
[38] Standard ISO 8302. Isolation thermique. détermination de la résistance thermique et des propriétés annexes en régime stationnaire. méthode de la plaque chaude gardée. Technical report, AFNOR, 1991.