NUMERICAL STUDY OF FORCED CONVECTION HEAT TRANSFER OVER THREE CYLINDERS IN STAGGERED ARRANGEMENT IMMERSED IN POROUS MEDIA

Main Article Content

Habib-Olah SAYEHVAND Mehrdad YARI SAKENE Amir BASIRI PARSA

Abstract

Staggered arrangement is one of the common configurations in heat exchangers that make better mixing of flow and heat transfer augmentation than other arrangements. In this paper forced convection heat transfer over three isothermal circular cylinders in staggered configuration in isotropic packed bed was investigated. In this work laminar two dimensional incompressible steady state equations of momentum and energy were solved numerically by finite volume method. Simulation was done in  three Reynolds numbers of 80, 120 and 200. The results indicate that, using porous medium the Nusselt number enhanced considerably for any of cylinders and it presents thin temperature contours for them. Also is shown that by increasing Reynolds number, the heat transfer increased in both channel but the growth rate of it in porous media is larger. In addition, results of simulation in porous channel show that with increasing Peclet number, heat transfer increased logarithmically.

Article Details

How to Cite
SAYEHVAND, Habib-Olah; YARI SAKENE, Mehrdad; BASIRI PARSA, Amir. NUMERICAL STUDY OF FORCED CONVECTION HEAT TRANSFER OVER THREE CYLINDERS IN STAGGERED ARRANGEMENT IMMERSED IN POROUS MEDIA. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2199>. Date accessed: 26 sep. 2017. doi: https://doi.org/10.2298/TSCI150808249S.
Section
Articles
Received 2017-03-03
Accepted 2017-03-13
Published 2017-03-13

References

[1] Chen, S. S., A review of flow-induced vibration of two circular cylinders in cross flow, Journal of pressure vessel technology, 108 (1986), 4, pp. 382-393
[2] Chen, S. S., Flow-induced vibration of circular cylindrical structures, Hemisphere publishing corporation Washington DC, USA, 1987
[3] Zdravkovich, M. M., review of flow interference between two circular cylinders in various arrangements, Journal of Fluids Engineering, 99 (1977), 4, pp. 618-633
[4] Zdravkovich, M. M., Flow around Circular Cylinders, Oxford University Press, England, 2003
[5] Zdravkovich, M. M., Classification of flow-induced oscillations of two parallel circular cylinders in various arrangements, Vibration of Arrays of Cylinders in Cross Flow, Symposium on Flow- Induced Vibrations, 1984, Vol. 2
[6] Sumner, D., et al., Flow-pattern identification for two staggered circular cylinders in cross-flow, Journal of Fluid Mechanics, 411 (2000), pp. 263-303
[7] Bahrampoury, R., et al., Comparison between In-line and Staggered Arrangements in Heat Recovery Steam Generators, Proceedings of the Fourth International Exergy, Energy and Environment Symposium April 19-23, AUS, Sharjah, UAE, 2009
[8] Buyruk, E., Numerical study of heat transfer characteristics on tandem cylinders, in-line and staggered tube banks in cross flow of air, International Communications in Heat and Mass Transfer 29 (2002), 3, pp. 355-366
[9] Gu, Z., Sun, T., On interference between two circular cylinders in staggered arrangement at high subcritical Reynolds numbers, Journal of Wind Engineering and Industrial Aerodynamics, 80 (1999), 3, pp. 287-309
[10] Sumner, D., Richards, M. D., Some vortex shedding characteristics of the staggered configuration of circular cylinders, Journal of Fluids and Structures, 17 (2003), 3, pp. 345-350
[11] Price, J., The origin and nature of the lift force on the leeward of two bluff bodies, Aeronautical Quarterly, 27 (1976), pp. 154-168
[12] Price, S. J., Paidoussis, M. P., The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow, Journal of Wind Engineering and Industrial Aerodynamics, 17 (1984), 3, pp. 329-347
[13] Kiya, M., et al., Vortex Shedding from Two Circular Cylinders in Staggered Arrangement, ASME, Journal of Fluids Engineering, 102 (1980), 2, pp. 166-173
[14] Moriya, M., Sakamoto, H., Fluctuating fluid forces acting on a downstream circular cylinder in the staggered arrangement, Trans of JSME, 1985, Vol. 51, pp. 2098-2104
[15] Jester, W., Kallinderis, Y., Numerical study of incompressible flow about fixed cylinder pairs, Journal of Fluids and Structures, 17 (2003), 4, pp. 561-577
[16] Mittal, S., et al., Unsteady incompressible flow past two cylinders in tandem and staggered arrangements, International Journal for Numerical Methods in Fluids, 25 (1997), 11, pp. 1315-1344
[17] Mittal, S., Kumar, V., Flow-Induced Oscillations of two cylinders in tandem and staggered arrangements, Journal of Fluids and Structures, 15 (2001), 5, pp. 717-736
[18] Akosile, O. O., Sumner, D., Staggered circular cylinders immersed in a uniform planner shear flow, Journal of Fluids and Structures, 18 (2003), 5, pp. 613-633
[19] Alam, M. M., Sakamoto, H., Investigation of Strouhal frequencies of two staggered bluff bodies and detection of multistable flow by wavelets, Journal of Fluids and Structures, 20 (2005), 3, pp. 425- 449
[20] Alam, M. M, et al., Determination of flow configurations and fluid forces acting on two staggered circular cylinders of equal diameter in cross-flow, Journal of Fluids and Structures, 21 (2005), 4, pp. 363-394
[21] Sumner, D., et al., Strouhal number data for two staggered circular cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 96 (2008), 6, pp. 859-871
[22] Zdravkovich, M. M., Smoke observations of the wake of a group of three cylinders at low Reynolds number, Journal of Fluid Mechanics, 32 (1968), 2, pp. 339-351
[23] Lam, K., Cheung, W.C.; Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements, Journal of Fluid Mechanics, 196 (1988), pp. 1-26
[24] Kareem, A., et al., Investigation of interference effects for a group of finite cylinders, Journal of Wind Engineering and Industrial Aerodynamics, 77 (1998), pp. 503-520
[25] Tatsuno, M., et al., Effects of interference among three equidistantly arranged cylinders in a uniform flow, Fluid Dynamics Research, 22 (1998), 5, pp. 297-315
[26] Guillaume, D. W., LaRue, J. C., Investigation of the flopping regime with two-, three- and four- cylinder arrays, Experiments in Fluids, 27 (1999), 2, pp. 145-156
[27] Buyruk, E., et al., The influence of adjacent tubes on Convection Heat Transfer from a Heated Tube in Cross-flow, In Institution of Mechanical Engineers Conference Publications, Medical Engineering Publication LTD, 1995. Vol. 2, pp. 135-135
[28] Kostić, Ž. G., Oka, S. N., Fluid flow and heat transfer with two cylinders in cross flow, International journal of heat and mass transfer, 15 (1972), 2, pp. 279-299
[29] Eckert, E. R. G., Distribution of heat-transfer coefficients around circular cylinders in crossflow at Reynolds numbers from 20 to 500, Trans ASME, 74 (1952), pp. 343-347
[30] Buyruk, E., et al., Numerical and experimental study of flow and heat transfer around a tube in cross flow at low Reynolds number, International Journal of Heat and Fluid Flow, 19 (1998), 3, pp. 223-232
[31] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, McGraw-Hill, New York, USA, 1980
[32] Al-Sumaily, G. F., et al., The effect of porous media particle size on forced convection from a circular cylinder without assuming local thermal equilibrium between phases, International Journal of Heat and Mass Transfer, 55 (2012), 13, pp. 3366-3378.