OPTIMIZED CLEANING AND COOLING FOR PHOTOVOLTAIC MODULES BASED ON THE OUTPUT PERFRMANCE

Main Article Content

Ahmad SAKHRIEH Layth MOHSIN Ahmad ABOUSHI Amer HAMDAN Eman ABDELHAFEZ Mohammed HAMDAN

Abstract

This study aimed to design and implement a smart automatic cleaning and cooling system for photovoltaic modules to be activated based on power drop resulting from dust accumulation and high temperature conditions. This was tested by installing two side by side identical photovoltaic modules. The first module was equipped with the prototype cleaning system while the second one was considered as standard. An optimized cleaning and cooling procedure was adopted using data acquisition system. The operational performance of both panels was recorded and analyzed. An increase in energy yield of 8.7% was obtained as a result of minimizing the operational disturbances of dust accumulation and high surface temperature of the photovoltaic panel.

Article Details

How to Cite
SAKHRIEH, Ahmad et al. OPTIMIZED CLEANING AND COOLING FOR PHOTOVOLTAIC MODULES BASED ON THE OUTPUT PERFRMANCE. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2211>. Date accessed: 14 dec. 2017. doi: https://doi.org/10.2298/TSCI151004145M.
Section
Articles
Received 2017-03-06
Accepted 2017-03-13
Published 2017-03-13

References

[1] Mazon, R., Cascales, J., Garcia, F., Kaiser, A., Parra, B., Development of an installation to the temperature of PV modules and improve their efficiency, proceedings, International Conference on Renewable Energies and Power Quality, 10th ICREPQ, Granada, Spain, 2010, pp. 245-253
[2] Bahaidarah, H., Subhan, A., Gandhidasan, P., Rehman, S., Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions, Energy, 59 (2013), pp. 445-453
[3] Drews, A., Keizer, A., Beyer, G., Lorenz, E., Betcke, J., Heydenreich, V., Wiemken, E., Stettler, S., Toggweiler, P., Bofinger, S., Heilscher, G., Heinemann, D., Monitoring and remote failure detection of grid connected PV systems based on satellite observations, Solar Energy, 81 (2007), 4, pp. 546– 564
[4] Nousia, T., Tripana, Y., Souliotis, M., Yianoulis, P., Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water, Solar Energy, 72 (2002), 3, pp. 217-234
[5] Royne, A., Dey, C., Design of a jet impingement cooling device for densely packed PV cells under high concentration, Solar Energy, 81 (2007), 8, pp. 1014–1024
[6] Kimber, A., Mitchell, L., Nogradi, S., Wenger, H., The Effect of Soiling on Large Grid- Connected Photovoltaic Systems in California and the Southwest Region of the United States, proceedings, IEEE 4th World Conference on Power Conversion, Hawaii, USA, 2006, pp. 219-228
[7] Tejwani, R., and Solanki, C., 360° sun tracking with automated cleaning system for solar PV modules, proceedings, 35th IEEE In Photovoltaic Specialists Conference (PVSC), Hawaii, USA, 2006, pp. 002895-002898
[8] Verma, L., Sakhuja, M., Son, J., Danner, A., Yang, H., Zeng, C., Bhatia, S., Self-cleaning and antireflective packaging glass for solar modules, Renewable Energy, 36 (2011), 9, pp. 2489-2493
[9] Elnozahy, A., Abdel Rahman, A., Ali, A. Abdel-Salam, M, Ookawara, S., Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning, Energy and Buildings, 88 (2015), pp. 100–109
[10] Ali, H. M., Mahmood, M., Bashir, M. A., Ali, M., Siddiqui, A. M., Outdoor testing of photovoltaic modules during summer in Taxila, Pakistan, Thermal Science, 20 (2016), 1, pp. 165-173
[11] Bashir, M. A., Ali, H. M., Ali, M., Siddiqui, A. M., An experimental investigation of performance of photovoltaic modules in Taxila, Pakistan, Thermal Science, 19 (2015), 2, pp. S525 - S534
[12] Ali, H. M., Zafar, M. A., Bashir, M. A., Nasir, M. A., Ali. M., Siddiqui, A. M., Effect of dust deposition on the performance of photovoltaic modules, Thermal Science, DOI: 10.2298/TSCI140515046A
[13] Zorrilla-Casanova, J., Piliougine, M., Carretero, J., Bernaola, P., Carpena, P., Mora-López, L., Sidrach-de-Cardona, M., Analysis of dust losses in photovoltaic modules, World Renewable Energy Congress, Linköping, Sweden, May 8-13, 2011
[14] Knisely, B., Janakeeraman, S., Kuitche, J., TamizhMani, G., Validation of draft, International electrotechnical commission 61853-2 Standard, Arizona State University, Photovoltaic Reliability Laboratory, USA, 2013