NON PARABOLIC INTERFACE MOTION FOR THE ONE-DIMENSIONAL STEFAN PROBLEM: DIRICHLET BOUNDARY CONDITIONS

Main Article Content

José A. OTERO Ernesto M. HERNANDEZ Rubén D. SANTIAGO

Abstract

Over a finite one dimensional specimen containing two phases of a pure substance, it has been shown that the liquid-solid interface motion exhibits parabolic behavior at small time intervals. We study the interface behavior over a finite domain with homogeneous Dirichlet boundary conditions for large time intervals, where the interface motion is not parabolic due to finite size effects. Given the physical nature of the boundary conditions, we are able to predict exactly the interface position at large time values. These predictions, that to the best of our knowledge, are not found in the literature, were confirmed by using the heat balance integral method of Goodman and a non-classical finite difference scheme. Using heat transport theory, it is shown as well, that the temperature profile within the specimen is exactly linear and independent of the initial profile in the asymptotic time limit. The physics of heat transport provides a powerful tool that is used to fine tune the numerical methods. We also found that in order to capture the physical behavior of the interface, it was necessary to develop a new non classical finite difference scheme that approaches asymptotically to the predicted interface position. We offer some numerical examples where the predicted effects are illustrated, and finally we test our predictions with the heat balance integral method and the non classical finite difference scheme by studying the liquid-solid phase transition in Aluminum.

Article Details

How to Cite
OTERO, José A.; HERNANDEZ, Ernesto M.; SANTIAGO, Rubén D.. NON PARABOLIC INTERFACE MOTION FOR THE ONE-DIMENSIONAL STEFAN PROBLEM: DIRICHLET BOUNDARY CONDITIONS. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2234>. Date accessed: 23 june 2017. doi: https://doi.org/10.2298/TSCI151114098H.
Section
Articles
Received 2017-03-06
Accepted 2017-03-13
Published 2017-03-13

References

[1] Tarzia, D.A., Explicit and Approximated Solutions for Heat and Mass Transfer Problems with a Moving Boundary, in: Advanced Topics in Mass Transfer (Ed. M.El-Amin), Rijeka, Croatia, 2011, pp. 439-484
[2] E. Javierre-Pérez, Literature Study: Numerical Problems for Solving Stefan Problems. Report No. 03-16, Delf University of Technology, Delft, Netherlands, 2003
[3] Javierre, E., et. al., Comparison of Numerical Models for One-Dimensional Stefan Problems, J. Comput. Appl. Math., 192(2006), 2, pp. 445-459
[4] Mitchell, S.L., Vynnycky M., On the Numerical Solution of Two-Phase Stefan Problems with Heat- Flux Boundary Conditions, J. Comput. Appl. Math., 264(2014), pp. 49-64
[5] Mitchell, S.L., Vynnycky M., Finite-Difference Methods with Increased Accuracy and Correct Initialization for One-Dimensional Stefan problems, Appl. Math. Comput., 215(2009), 4, pp. 1609-1621.
[6] Tadi, M., A Four-Step Fixed-Grid Method for 1D Stefan Problems, J. Heat Transf., 132(2010), 11, pp. 114502-114505
[7] Wu, Zhao-Chun, Wand, Qing-Cheng, Numerical Approach to Stefan Problem in a Two-Region and Limited Space, Therm. Sci., 16(2012), 5, pp. 1325-1330
[8] Savovic, S., Caldwell, J., Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method, Therm. Sci., 13(2009), 4, pp. 165-174
[9] Savovic, S., Caldwell, J., Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions, Int. J. Heat Mass Tran., 46(2003), 15, pp. 2911-2916
[10] Caldwell, J., et. al., Nodal integral and finite difference solution of one-dimensional Stefan problem, J. Heat Trans-T. ASME, 125(2003), 3, pp. 523-527
[11] T.R. Goodman, Application of Integral Methods to Transient Nonlinear Heat Transfer, Advances in Heat Transfer, Academic Press, New York, 1964
[12] Fraguela, A., et. al., An approach for the Identification of Diffusion Coefficients in the Quasi- Steady State of a Post-Discharge Nitriding Process, Math. Comput. Simulat., 79(2009), 6, pp. 1878- 1894
[13] Mitchell, S.L., Myers T. G., Application of Standard and Refined Heat Balance Integral Methods to One Dimensional Stefan problems, SIAM Rev., 52(2010), 1, pp. 57-86
[14] Sadoun, N., et. al., On the Goodman Heat Balance Integral Method for Stefan Like Problems: Further Considerations and Refinements, Therm. Sci., 13(2009), 2, pp. 81-96
[15] Sadoun, N.,et. al., On Heat Conduction with Phase Change: Accurate Explicit Numerical Method, J. Appl. Fuid Mech., 5(2012), 1, pp. 105-112
[16] Sadoun, N., et. al., On the Goodman Heat-Balance Integral Method for Stefan Like-Problems, Therm. Sci., 13(2009), 2, pp. 81-96
[17] Wu, Z., et. al., A Novel Algorithm for Solving the Classical Stefan Problem, Therm. Sci., 15(2011), suppl 1., pp. 39-44
[18] Yvonnet, J., et. al., The Constrained Natural Element Method (C-NEM) for Treating Thermal Models Involving Moving Interfaces, Int. J. Therm. Sci., 44(2005), 6, pp. 559-569
[19] Fasano, A., Primicerio, M., General Free Boundary Problems for the Heat Equation, I, J. Math. Anal. Appl., 57(1977), 3, pp. 694-723
[20] Fasano, A., Primicerio, M., General Free Boundary Problems for the Heat Equation, II, J. Math. Anal. Appl., 58(1977), 1, pp. 202-231

Most read articles by the same author(s)