Main Article Content



Furnace sorbent injection for sulfur removal from flue gas presents a challenge, as the proper process optimization is of crucial importance in order to obtain both high sulfur removal rates and good sorbent utilization. In the simulations a two-phase gas-particle flow is considered. Pulverized coal and calcium-based sorbent particles motion is simulated inside of the boiler furnace. It is important to determine trajectories of particles in the furnace, in order to monitor the particles heat and concentration history. A two-way coupling of the phases is considered – influence of the gas phase on the particles, and vice versa. Particle– to–particle collisions are neglected. Mutual influence of gas and dispersed phase is modeled by corresponding terms in the transport equations for gas phase and the equations describing the particles turbulent dispersion. Gas phase is modeled in Eulerian field, while the particles are tracked in Lagrangian field. Turbulence is modelled by the standard k-ε model, with additional terms for turbulence modulation. Distribution, dispersion and residence  time of  sorbent particles in the furnace have a considerable influence on the desulfurization process. It was shown that, by proper organization of process, significant improvement considering emission reduction can be achieved.

Article Details

How to Cite
TOMANOVIĆ, Ivan D. et al. NUMERICAL TRACKING OF SORBENT PARTICLES AND DISTRIBUTION DURING GAS DESULFURIZATION IN PULVERIZED COAL-FIRED FURNACE. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <>. Date accessed: 20 feb. 2018. doi:
Received 2017-03-07
Accepted 2017-03-14
Published 2017-03-14


[1] Đuković, J., Bojanić, V., Aerozagađenje: pojam, stanje, izvori, kontrola i tehnološka rešenja (Air pollution: apprehension, state, sources, control, and technical solutions, in Serbian), D. P. Institut zaštite ekologije, Banja Luka, Bosnia and Herzegovina, 2000
[2] Belosevic, S., Beljanski, V., Tomanovic, I., Crnomarkovic, N., Tucakovic, D., Zivanovic, T., Numerical analysis of NOx control by combustion modifications in pulverized coal utility boiler, Energy & Fuels, 26 (2012), 1, pp. 425-442
[3] Makarytchev, S. V., Cen, K. F., Luo, Z. Y., Staged desulphurization by direct sorbent injection in pulverized-coal boilers, Energy, 19 (1994), 9, pp. 947-956
[4] Dou, B., Pan, W., Jin, Q., Wang, W., Li, Y., Prediction of SO2 removal efficiency for wet flue gas desulphurization, Energy Conversion and Management, 50 (2009), 10, pp. 2547-2553
[5] Srivastava, R. K., Jozewicz, W., Singer, C., SO2 scrubbing technologies: A review, Environmental progress, 20 (2001), 4, pp. 219-228
[6] ***, LIFAC North America, Project performance summary, Clean coal technology demonstration program, 2004
[7] Borgwardt, R., Calcium oxide sintering in atmospheres containing water and carbon dioxide, Industrial and Engineering Chemistry Research, 28 (1989), 4, pp. 493-500
[8] Alvfors, P., Svedberg, G., Modelling of the simultaneous calcination, sintering and sulphation of limestone and dolomite, Chemical engineering science, 47 (1992), 8, pp. 1903-1912
[9] Lindner, B., Simonsson, D., Comparison of structural models for gas-solid reactions in porous solids undergoing structural changes, Chemical Engineering Science, 36 (1981), 9, pp 1519-1527
[10] Kocafe, D., Karman, D., Steward, F. R., Interpretation of the sulfation rate of CaO, MgO, and ZnO with SO2 and SO3, AIChE Journal, 33 (1987), 11, pp. 1835-1843
[11] Miline, C. R., Silcox, G. D., Pershing, D. W., Kirchgessner, D. A., Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents, Industrial and Engineering Chemistry Research, 29 (1990), 2, pp. 139-149
[12] Silcox, G. D., Kramlich, J. C., Pershing, D. W., A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles, Industrial and Engineering Chemistry Research, 28 (1989), 2, pp. 155-160
[13] Fan, L. S., Ghosh-Dastidar, A., Mahuli, S., Agnihotri, R., in: Dry scrubbing technologies for flue gas desulfurization (Ed. B. Toole-O'Neil), Kluwer Academic Publishers, Norwell, MA, USA, 1998, pp. 421-527
[14] Sijerčić, M., Matematič o modeli anje kompleksnih turbulentnih transportnih procesa - (Mathematical modeling of complex turbulent transport processes, in Serbian), Jugoslovensko društvo termičara - Institut za nuklearne nauke "Vinča", Beograd, 1998
[15] Belošević, ., Tomanović, I., Beljanski V., Tucaković, ., Živanović, T., Numerical prediction of processes for clean and efficient combustion of pulverized coal in power plants, Applied Thermal Engineering, 74 (2015), CCT2013, pp. 102-110
[16] Chen, X.-Q., Pereira J.C.F., Computational modeling of a dilute turbulent liquid-solid flow using a Eulerian-Lagrangian approach, International Journal of Numerical Methods for Heat & Fluid Flow, 10 (2000), 4, pp. 409-431
[17] Sijerčić M., Nemoda S., Oka S., The comparison of stochastic and diffusion models of dispersed phase in two-phase flows, Proceedings, International symposium on two-phase modeling and experimentation, Conference, Rome, Italy, 1995. pp. 375-383
[18] Belošević, S., Sijerčić, M, Tucaković , D., Crnomarković, N., A numerical study of a utility boiler tangentially-fired furnace under different operating conditions, Fuel, 87 (2008) 15-16, pp. 3331-3338
[19] Tomanović, I., Belošević ć, S., Milićević, A., Tucaković D., Modeling of calcium-based sorbent reactions with sulfur dioxide, Journal of the Serbian Chemical Society, 80 (2015), 4, pp. 549-562

Most read articles by the same author(s)