NUMERICAL PREDICTION OF COMPRESSIBLE HEAT FLOW WITH COMPLEX WALL TEMPERATURE IN SUPERSONIC ROCKET NOZZLES

Main Article Content

Khaled BENSAYAH El-Ahcene MAHFOUDI

Abstract

Wall heat transfer coefficients and static wall pressures are determined over wide ranges of stagnation pressures and stagnation temperatures  under large pressure gradients in a cooled convergent-divergent nozzle. The effects of specific heat ratio, turbulent Prandtl number and wall temperature value on the heat transfer and on the position of separation flow are not yet dis- cussed accurately. Computing correct boundary layer under adverse pres- sures gradients is of a particular importance to the accurate modeling of separated flow. This numerical investigation is conducted to assess the accu- racy of the SST-V turbulence model when computing boundary layer separa- tion in supersonic nozzle with heat transfer. It is concluded that the wall heat transfer coefficients and the position of separation point are influenced by the variation of many parameters as heat specific ratio, wall temperature  and turbulent Prandtl number.

Article Details

How to Cite
BENSAYAH, Khaled; MAHFOUDI, El-Ahcene. NUMERICAL PREDICTION OF COMPRESSIBLE HEAT FLOW WITH COMPLEX WALL TEMPERATURE IN SUPERSONIC ROCKET NOZZLES. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2366>. Date accessed: 20 feb. 2018. doi: https://doi.org/10.2298/TSCI160616270B.
Section
Articles
Received 2017-03-10
Accepted 2017-03-14
Published 2017-03-14

References

[1] L. H.Back, P. F. Massier, H. L Gier, Convective Heat Transfer in a Convergent-Divergent Nozzle, Int. J. Heat Mass Transfer (1964) Vol.7, PP. 549-568.
[2] E.Lutum, J. von Wolfersdorf, K. Semmler, J. Dittmar, B. Weigand, An experimental investigation of film cooling on a convex surface subjected to favourable pressure gradient flow, Int. J. Heat Mass Transfer 44 (2001), 939-951.
[3] V. P. Lebedev, V. V. Lemanov, V. I. Terekhov , Film-Cooling E_ciency in a Laval Nozzle Under Conditions of High Freestream Turbulence, Journal of Heat Transfer, vol .128 (2006), 571-579.
[4] L. H.Back, P. F. Massier, H. L Gier, Comparison of Measured and Predicted Flows through Coni- cal Supersonic Nozzles, with Emphasis on the Transonic Region, AIAA Journal, Vol. 3, No. 9, Sept. (1965), pp. 1606-1614.
[5] R. F. Cuffel, L. H. Back, and P. F. Massier, Transonic Flow field in a Supersonic Nozzle with Small Throat Radius of Curvature, December, AIAA paper (1968) Vol7, N7 PP 1364-1366.
[6] J.C. Delise, M.H.N. Naraghi, Comparaison Studies of Convective Heat Transfer Models for Rocket Engines, AIAA (1995)-2499.
[7] J. Xu, C. Zhao, Two-dimensional numerical simulations of shock waves in micro convergent- divergent nozzles, Int. J. Heat Mass Transfer 50 (2007)2434-2438.
[8] X. Xiao, H. A. Hassan, J .R. Edwards, Role of Turbulent Prandtl Numbers on Heat ux at Hyper- sonic Mach Numbers, AIAA 45, No 4, April (2007) 806- 813.
[9] T. P. Sommer, R. M. C. So, H. S. Zhang, A Near Wall Four-Equation Turbulence model for Com- pressible Boundary Layers, NASA Contractor Report (NASA-CR-4436). Arizona State Univ, 1992.
[10] T. P. Sommer, R. M. C. So, H. S. Zhang, A Near Wall Variable Turbulent-Prandtl-Number Turbulence Model For Compressible Flows, AIAA (1993) Vol. 31.N 1, 27-35.
[11] A. Hadjadj, M. Onofri, Nozzle flow separation, Shock Waves vol. 19, pp. 163-169 (2009).
[12] R.A. Lawrence, Symmetrical and unsymmetrical flow separation in supersonic nozzles. Re- search Report Number 67-1, Southern Methodist University, 1967.
[13] S.B. Verma, Study of flow separation in truncated ideal contour nozzle. J. Propuls. Power 18, 11121121 (2002)
[14] L.H. Nave, G.A. Coffey, Sea-level side loads in high-area-ratio rocket engines. AIAA Paper 73-1284 (1973)
[15] C. L. Rumsey, Compressibility Considerations for k-! Turbulence Models in Hypersonic Boundary Layer Applications, NASA TM 215705, April, 2009.
[16] C. L. Rumsey, Consistency, veri_cation, and validation of turbulence models for Reynolds- Averaged Navier-Stokes applications, 3rd European Conference for Aerospace Sciences, Paper EUCASS2009-7.
[17] F. R. Menter, Improved Two-Equation k-omega Turbulence Models for Aerodynamic Flows, NASA TM 103975, October 1992.
[18] J. G. Moore, J. Moore, Realizability in two-equation turbulence models, AIAA (1999) 3779.
[19] R.W. MacCormack, Current status of numerical solution of the Navier-Stokes equations, AIAA (1985) 0032.
[20] J. Steger, R.F. Warming, Flux vector splitting of the invisid gas dynamics equations with ap- plication to finite difference methods, NASA TM-78605, 1979.
[21] C. Campbell, J. Farley, Performance of several conical convergent-divergent rocket type ex- haust nozzles, NASA TN D-467, 1960.
[22] R. Sauer, General Characteristics of the Flow Through Nozzles at Near Critical Speeds, NACA TM-1147, 1947.
[23] K. Oswatitsch, W. Rothstein, Flow Pattern in a Converging-Diverging Nozzle, NACA TM- 1215, 1949.
[24] I. M. Hall,Transonic Flow in Two-Dimensional and Axially-Symmetric Nozzles, Quarterly Journal of Mechanics and Applied Mathematics, Vol. XV, Pt. 4, (1962), pp.487-508.
[25] M.V. Herbert, R.J. Herd, Boundary-layer Separation in supersonic propelling nozzles, NGTE report No. 3421, 1964.
[26] J. Délery, J. Marvin, Shock-Wave boundary layer Interactions, volume AGARDograph N. 28, AGARD, February 1986.
[27] R. H. Schmucker. Status of flow separation prediction in liquid propellant rocket noz- zles,Technical Memirandum TM X-64890. NASA, George C. Marshall Space Flight Center, 1974.
[28] W. Vieser, T. Esch, and F. Menter, Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models, CFX/ANSYS, Tech. Rept. CFX-VAL 10/0602, Otterfing, Germany, 2002.
[29] X. L. Tong, E. Luke, Turbulence Models and Heat Transfer in Nozzle Flows, AIAA (2004) vol.42. N.11.2391-2393.