THERMAL WATER UTILIZATION IN THE HUNGARIAN GREENHOUSE PRACTICE

Main Article Content

Csaba FOGARASSY Janos NAGYGAL Laszlo TOTH Balint HORVATH

Abstract

This article focuses on the usage of geothermic energy in greenhouses, its energy-, economic efficiency-, and sustainability-related questions. The most notable cost greenhouses produce during operation is the usage of heat energy, which is why when planning a system for this purpose, the energetic analysis of the solution to be used is one of the most important factors. The presented analyses suggest that of the energy resources currently available and usable, geothermic energy has the lowest unit cost. In the case of greenhouse heating, this method turned out to be the most cost-effective among all solutions using any of the energy resources. Regarding the environmental aspect, the CO2 emission rates of the various heating methods have been examined as well. Using the thermal water of the greenhouses before reinjection is an efficient way of energy utilization. Even though the firewood and pellet boilers look the most efficient forms for the first time, past experiences proved them to be the most expensive ones as well. Therefore, it can be stated that the utilization of geothermal energy is the  best solution for greenhouse heating, from the perspectives of economic and environmental aspects as well.


Based on the previous observations in terms of environmental and economic efficiency this paper aims to discover the opportunities for high-scale  thermal utilization in Hungary in order to meet its future renewable targets.

Article Details

How to Cite
FOGARASSY, Csaba et al. THERMAL WATER UTILIZATION IN THE HUNGARIAN GREENHOUSE PRACTICE. Thermal Science, [S.l.], mar. 2017. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/2380>. Date accessed: 20 feb. 2018. doi: https://doi.org/10.2298/TSCI160831011N.
Section
Articles
Received 2017-03-10
Accepted 2017-03-14
Published 2017-03-14

References

[1] Hungarian Ministry of National Development., Renewable Energy Action Plan of Hungary For 2010-2020, Budapest, 2011 pp.13-15
[2] Lipsey, L., Pluymaekers, M., Goldberg, T., van Oversteeg, K., Ghazaryan, L., Cloetingh, S., van Wees, J. D., Numerical modeling of thermal convection in the Luttelgeest carbonate platform, the Netherlands, Geothermics, 64 (2016), pp. 135–151 http://dx.doi.org/10.1016/j.geothermics.2016.05.002
[3] Árpási, M., Geothermal Update of Hungary 2000–2004, in: Proceedings World Geothermal Congress Antalya, Istanbul, Turkey, 2005, pp. 41-52
[4] Nagygál, J., A termálvíz hasznosítása a mezőgazdaságban [Thermal water using in the agricultural production], in: CLUSTHERM Regional Forum (WORKSHOP), Szeged, 2009 pp.10-15
[5] Bartels, J., Seibt, P., Wolfgramm; in: Workshop “Geothermal energy in Hungary update barriers and solution statements”, Budapest, 2011 pp. 20-41
[6] Lund, J. W., Boyd, T., L., Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 60 (2016), pp. 66–93 http://dx.doi.org/10.1016/j.geothermics.2015.11.004
[7] Büki, G., Megújuló energiák hasznosítása [Renewable energy utilisation], Hungarian Academy of Science, Budapest, 2010 pp. 24-34
[8] Nagygál, J., Experiences of the Geothermal Project in Szentes, in: Hungary IGC, Freiburg, Germany, 2014 pp. 1-13
[9] Nagygál, J., Tóth, L., Horvath, B., Bártfai, Z., Szabó, I., Enhancing the effectiveness of thermal water consumption via heat pumping, APSTRACT – Applied Studies in Agribusiness and Commerce, 9 (2015), 4, pp. 53-58 http://dx.doi.org/10.19041/APSTRACT/2015/4/7
[10] Beke, J., The basics of technical thermodynamics. Szent István University Publisher, Gödöllő, Hungary, 2014 pp. 15-27
[11] Ghosal, M. K., Tiwary, G. N. Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy, Solar Energy, 5 (2003) pp. 603-613 http://dx.doi.org/10.1016/j.solener.2003.12.004
[12] Bergman, T. L., Lavine, A. S., Frank, P. I., David P. D., Fundamentals of Heat and Mass Transfer (7th ed.), John Wiley & Sons Inc., New York, USA, 2011 pp. 382-390
[13] ANSI/ASAE EP 406.4 Standard: heating, ventilation and cooling greenhouses. American Society of Agricultural Engineers, MI, USA, 2003 pp. 5-100
[14] Nagygál, J., Tóth, L., Beke, J., Szabó I., Comparison of Possible Greenhouse Energy Sources, Hungarian Agricultural Engineering, 26 (2014), pp. 47-53 http://dx.doi.org/10.17676/HAE.2014.26.47
[15] Szongoth, G., Hegedűs, S., Buranszki J., Providing geotechnical information on basis of boreholegeophysical measurements in underground-drilled boreholes, in: Geological Site Investigation and Risk Analysis ITA SEE, Dubrovnik, Croatia, 2011, pp. 27-38
[16] Szongoth, G., Barcza, M., Kiss, S., Nagygál, J., Termálkutak állapotának változásai Szentes térségében geofizikai vizsgálatok alapján [The changings of heat pums intensity in Szentes region], in: Magyarhoni Földtani Társulat Vándorgyűlése, Szeged, Hungary, 2010, pp. 47-56
[17] Szanyi, J., Kóbor, B., Csanádi, A., Medgyes, T., Bálint, A., Kiss, S., Kovács, B., Sustainable Geothermal Reservoir Management in South-East Hungary, Oradea: Editura Universitatii din Oradea, (2012) pp. 113-116
[18] Szanyi J., Kovács, B., Medgyes, T., Kóbor, B., Kurunczi, M., Vass, I., Injection of Thermal Water into Porous Reservoirs. In: Proceedings World Geothermal Congress, Bali, Indonesia, 2010, p. 51-58.
[19] Szongoth, G., Galsa, A., Steierlein, I., Húsz szentesi hévízkút teljeskörű kútvizsgálatának eredményei - '10 éve a geotermia szolgálatában'[Results of comprehensive examination of 20 thermal unit in Szentes region] in: IX. Geotermikus Konferencia, Szeged, Hungary, 2013 pp. 67- 78.
[20] Mago, L. Working hours demand of transportation tasks in foil covered field vegetable production technology. Hungarian Agricultural Engineering, 29 (2016) pp. 28-31 http://dx.doi.org/10.17676/HAE.2016.29.28