EXPERIMENTAL STUDY ON FIBER SUSPENSIONS IN A CURVED EXPANSION DUCT WITH PARTICLE IMAGE VELOCIMETRY

Main Article Content

Xiao-Yu LIANG Huan-Huan WU Kai ZHANG Cheng-Xu TU

Abstract

The visualization measurement of internal flow field in a curved expansion duct  is experimentally studied using particle image velocimetry technology and the influence of flow rate on flow field is analyzed. The streamline distribution and related performance curve in the internal flow field can be figured out through further analysis of experiment data. The results show that fiber orientation is mainly affected by velocity gradient, the fibers near the wall are aligned with the flow direction more quickly than the fibers in intermediate region, and the fibers near the concave wall are more quickly aligned with the flow direction than the convex wall. The larger inlet flow rate which will accordingly lead to increase inlet velocity enables the more quick adaptation and steady of fibers in flow direction.

Article Details

How to Cite
LIANG, Xiao-Yu et al. EXPERIMENTAL STUDY ON FIBER SUSPENSIONS IN A CURVED EXPANSION DUCT WITH PARTICLE IMAGE VELOCIMETRY. Thermal Science, [S.l.], v. 16, n. 5, p. 1414-1418, dec. 2016. ISSN 2334-7163. Available at: <http://thermal-science.tech/journal/index.php/thsci/article/view/832>. Date accessed: 14 dec. 2017. doi: https://doi.org/10.2298/TSCI1205414L.
Section
Articles
Received 2016-12-29
Accepted 2016-12-30
Published 2016-12-30

References

[1] Bay, R. S., Tucker, III. C. L., Fiber Orientation in Simple Injection Moldings, Part II: Experimental results, Polym Compos., 13 (1992), 4, pp. 332–341
[2] Yasuda, K., Mori, N., Nakamura, K., A New Visualization Technique for Short Fibers in a Slit Flow of Fiber Suspensions, Inter. J. of Engineering Science, 40 (2002), 9, pp. 1037-1052
[3] Lin, J. Z., Zhang, W. F., Yu, Z. S., Numerical Research on the Orientation Distribution of Fibers Immersed in Laminar and Turbulent Pipe Flows, J. of Aerosol Science, 35 (2004), 1, pp. 63-82
[4] Zhang, L. X., Lin, J. Z., Chan, T. L., Orientation Distribution of Cylindrical Particles Suspended in a Turbulent Pipe Flow, Physics of Fluids, 17 (2005), pp. 1-8
[5] Zhou, K., Lin, J. Z., Chan, T. L., Solution of 3D Fiber Orientation in 2D Fiber Suspension Flows, Physics of Fluids, 19 (2007), pp. 1-12
[6] Lin, J. Z., Shi, X., You, Z. J., Effects of the Aspect Ratio on the Sedimentation of a Fiber in Newtonian Fluids, Journal of Aerosol Science, 34 (2003), 7, pp. 909-921
[7] Lin, J. Z., Shi, X., Yu, Z. S., The Motion of Fibers in an Evolving Mixing Layer, Int. J. of Multiphase Flow, 29 (2003), 8. pp. 1355-1372
[8] Lin, J. Z., Zhang, S. L., Olson, J. A., Computing Orientation Distribution and Rheology of Turbulent Fiber Suspensions Flowing through a Contraction, Engineering Computations, 24 (2007), 1, pp. 52-76
[9] You, Z. J., Lin, J. Z., Yu, Z. S., Hydrodynamic Instability of Fiber Suspensions in Channel Flows, Fluid Dynamics Research, 34 (2004), 4, pp. 251-271
[10] Yasuda, K., Kyuto, T., Mori, N., An Experimental Study of Flow-induced Fiber Orientation and Concentration Distributions in a Concentrated Suspension Flow through a Slit Channel Containing a Cylinder, Rheologica Acta, 43 (2004), 2, pp. 137-145
[11] Jasberg, A., Kataja, M., New Experimental Results on the Flow Regimes in Closed Channel Flows of Wood Fiber Suspensions, Advances in Pulp and Paper Research, 1-3 (2009), pp. 161-180
[12] Metzger, B., Butler, J. E., Guazzelli, E., Experimental Investigation of the Instability of a Sedimenting Suspension of Fibers, J. Fluid Mech., 575 (2007), pp. 307-332
[13] Zhang, Q. H., Lin, J. Z., Wang, C. X., Orientation Distribution of Fibers Immersed in a Curved Expansion Duct Flow, Int. J. Nonlinear Sciences and Numerical Simulation, 10 (2009), 11-12, pp. 1585-1594